skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Babkin, Sergii"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We consider incomplete observations of stochastic processes governing the spread of infectious diseases through finite populations by way of contact. We propose a flexible semiparametric modeling framework with at least three advantages. First, it enables researchers to study the structure of a population contact network and its impact on the spread of infectious diseases. Second, it can accommodate short- and long-tailed degree distributions and detect potential superspreaders, who represent an important public health concern. Third, it addresses the important issue of incomplete data. Starting from first principles, we show when the incomplete-data generating process is ignorable for the purpose of Bayesian inference for the parameters of the population model. We demonstrate the semiparametric modeling framework by simulations and an application to the partially observed MERS epidemic in South Korea in 2015. We conclude with an extended discussion of open questions and directions for future research. 
    more » « less